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ALFVifN-ION-CYCLOTRONINSTABILITY IN MIRROR MACHINESa

Duncan C. Watsonb
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ABSTRACT

The Alfv6n-ion-cyclotron instability is studied for finite mirror-

confimsd plasmas with high beta without field-reversal. Variation

perpendicular m field-lines is modeled by an effective $. Variation along a

representative field-lim is treated using the Wentzel-Kramer-Brillouin

approximation in two ways. First, the local dispersion relation is expanded

about a wavenumber and frequency correspending to absolute instability at the

machine midplane. This yields a paraboLic lj(s) and a frequency correction.

Second, the local dispersicm relation is evaluated exactly as a function of

position, and the appropriate phase-integralcondition is used to fix the

frequency. This condition is chosen using a generalizedWKB formulationwhich

is outlined. The two ways of obtaining the mode frequency agree closely.

Stability boundaries are drawn in $J - $ space for two representative finite

plasmas. The 1ong thin approximation is used to model finite-beta

well-deepening. For ease of computation, the bi-Maxwellian ion velocity

distribution is used. At high f3the stability boundaries are affected by the

appearance of an dditional root, with a larger parallel wavenumber and a

w
lower frequency.

●
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1. INTRODUCTION

*

As mirror f3-valuesincrease, electromagnetic instabilitiesbecome

important. Such instabilitieshave been extensively studied in space ●

plasmas.l In this paper the Alfv6n-ion-cyclotron instability2,3 is

studied for finite mirror-confined plasmas with high beta but without

fiel+reversal. The effects of spatial inhomogeneity are included to second

order. In general, the WKB method cannot be applied in more than one

dimension; therefore, variatiqn perpendicular to field lines is modeled by an

effective ki. Variation along a representative field-line is treated using

the WKB approximation in two ways. First, the wavenumber

corresponding to absolute instability at the midplane are

Briggs-Bers criterion4 of a pinch-point in the complex $1

and frequency

found using the

plane. The local

dispersion relation is expanded about the midplane, yielding a parabolic kll(s)

and a frequency correction as shown by Pearlstein and Berk.5 Second, the

local dispersion relation is evaluated exactly as a function of position,

assuming a parabolic magnetic well. The turning-points and Stokes’ lines are

found in the complex s plane. The frequency is fixed using the appropriate

phase-integral condition, chosen using a generalized WKB formulation due to

Berk and Sharp.6 The two ways of obtaining the mode frequency agree closely.

Stability boundaries are drawn in 131- $ spacefo r two representative

,
finite plasmas. Case I is a plasma of radius 15 vacuum ion Larmor radii,3

1 lying in a parabolic magnetic well whose vacuum scale length is 50 ion Larmor

1 radii. Case II is a plasma of radius 2.7 vacuum ion Larmor radii, lying in a

parabolic magnetic well whose vacuum scale length is 15 ion Larmor radii. The

long thin approximation is used to model finite-beta well-deepening. For ease
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of computation, the bi-Maxwellian ion velocity distribution is used.

Stability decreases with increasing beta and with increasing machine size. At
●

high beta the stability boundaries are affected by the appearance of an

9 additional root, with a larger parallel wavenumber and a lower frequency.

11. LOCAL DISPERSION RELATION

The dispersion relation for an Alfv6n-ion-cyclotron wave propagating

parallel to the magnetic field may be written2

22

0 5 c

‘7+t7 +-+
pi

(1)

The first term is the free-space contribution, with displacement current

omitted. The

E X B drift.

respectively,

second term is the electron contribution, approximatedby the

The ion contribution is split into three terms representing,

the behavior of a cold fluid, the effect of non-zero

temperature, and the effect of non-zero anisotropy. The Landau damping from

the second ion term competes with the Landau growth from the third ion term to

determine the purely temporal behavior of the instability.

● Let s be the distance along a typical field-line measured from the

midplane of the machine. Assume a simple bi-Maxwellian ion distribution which
.

obeys adiabatic invariance. Neglect

TCXL(0) cfl
fOi (Vl,vll,s)‘—

7r 7

ambipolar potential, then

exp
[
- al(shf - 71vi ] (2)
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where

Then, the dispersion relation (1) reduces to3

1
‘T

22

(;,,
51c

O = D.. s,u):~+~+w-ww (s)
ci ci

Wpl

w

-( )]

71
w~

m-l z’
ci

where

2
.(s) = w~i(o) algal .

‘pl

We assume that a transversemode pattern exists which can be modeled

a half-wavelengthwithin the diameter of the plasma at the midplane.

the midplane,

where the subscript v denotes quantities defined with respect to the

(4)

(5)

as having

Thus, at

(6)

vacuum

field, and the long thin approximation has been used. We further assume that

the mode pattern is tied to the field lines, and neglect quadruple effects.

Strictly speaking, this introduces a variation of the parameter

(7)
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along a field line, but this will be neglected.

w

●

9

●

The determinant of the dispersion tensor now serves as the local

dispersion function. The electrons are cool and the frequency is low; thus,

the parallel electric field is shorted out and coupling to the right-hand

polarized mode is the only coupling that need be included. The local

dispersion relation in an obvious notation is

(8)

Explicitly,

cc!

z rr )-1+ Xn Zn
n=-m (9)

pi(s) is given by (5), x is given by (6), andwhere ~2

xflg=-~-nr
n

()2
n-l + (x-n) rn - $ rn+l , (lo)

rrXn = - f m-l + (x+n) r -
()

A+nr
n 2 n+1

Xlr
n = ~ m-l - Xrn + ~ ‘n+l ‘

(111

(12)



-6-

(13)

The transverse wavevector in (9) is treated as a parameter and the parallel

mode variation treated by one of the two methods to which we now turn.

III. EXPANSION ABOUT ABSOLUTE INSTABILITY

The Briggs-Bers

3medium is that there

D (ko, Wo) =

(~D/~k) Ik
o

criterion for absolute instability in a homogeneous

exist a ko, U. such that

o,’ (15)

=0 , (16)..
,9 wo

and such that the coincident roots k(wo) migrate to opposite sides of the

real k axis as w. + + CO.
1

One way to deal with the inhomogeneousproblem is as follows.
4

Suppose that one can find an “absolute instability in the midplane plasma?” or

more strictly that one can find a $1o) ‘o such that

D ($10> o, Wo) = o ,

[9m( 1, 0, W. )1% ]$,.=O‘

(17) ●

(18)
●

where the dispersion function is given by (9). Expanding D about ($lo,~o, O)
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one obtains an s dependence for $,, whose form depends on the assumed

.9 frequency-shift~:

4 (19)

(20)

The phase-integralmethod will be discussed in detail in Section IV. Here, we

use the fact that, under certain conditions, a spatially-confinedmode exists

when

‘t

(2n+ l)w + \
-s

ds l$s) - $(s)1 ,

t .

where the roots $;, $ coincide at s = f st’

Using the local dispersion relation (20) one

mode exists when

()
22 1/2

~=-$*#?y ,

akll

where all derivatives are evaluated at ($10,

(21)

the so-called turning-points.

deduces that a spatially-confined

(22)

(Alo, o). This is the

Pearlstein-Berk estimate5 of the finite-langth frequency-shift. The sign of

b the square root is chosen in accord with the exact phase-integral solution in

Section IV.
●

Figure 7 shows the stability boundaries in (31- $ parameter space for

two different-sized plasmas. Case I is a plasma of radius 15 vacuum ion

Larmor radii, lying in a parabolic magnetic well whose vacuum scale length is



.

50 ion Larmor radii. Case II is a plasma of radius 2.7 Larmor radii, in a

well of scale length 15 Larmor radii, In both cases the long thin
●

approximation is used to estimate the finite-~ magnetic-field depression.

Figure 1 shows for comparison the absolute stability boundaries for ●

.
infinite-length systems, I.e., Aw = O.

Topology checks in the complex k plane are carried out at the parameter

points indicated by circles in Fig. 1. For both case I and case II, the kink

in the stability boundary is associated with the existence of two

saddle-points satisfying (17) and (18). The one with the higher growth-rate

determines the boundary, as long as it is a true pinch-point. The topology

checks for case I are displayed in Figs. 2 - 4, for case 11 in Figs. 5 and 6.

In each case the “usual” saddle point is the one determining stability at low

and moderate f31. The arrows indicate the migration of the k roots as Ui + + ~.

The frequency is normalized to the actual midplane ion gyrofrequency. The

wavenumber is normalized to the actual midplane ion gyroradius, defined in

terms of 2<v2>/3 rather than <vJ2>.

Topology checks for the finite-length systems are carried out at the

parameter points indicated by circles in Fig. 7. For case I the stability

boundary is smooth. The “usual” saddle-point displays the same behavior

high @l that the “other” saddle-point displayed in the infinite-length

system. For case II the boundary is qualitatively similar to that with

Au= 0. The k-plane topology checks for case I are displayed in Figs. 8

at

and ●

9, for case II in Figs. 10 and 11. The frequency is normalized to the actual

depressed-fieldmi~plane ion gyrofrequency. The wavenumber is normalized to
●

the actual midplane gyroradius, defined in terms of 2<v2>13.
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For case I it is found that only the 1 = O, *1 ~roharmonics need be

included in the computations. For case II the J?= *2 must be included also.
●

For case II the factor (1 - filv)in the denominator of (5) is replaced by

9 (1 - 8J/2 . This is an attempt to allow for the narrow, sloping shape

of the Bl(r) dependence in the case I plasma, as distinct from the

flat-topped 6L(r) dependence expected in case II.

IV. GENERALIZED WKB THBORY

We use a generalized WKB method due to Berk and Sharp6. This method

can be used for integral equations. The turning points are not restricted to

k=O. The method constitutes the extension of Briggs-Bers analysis to finite

systems, and provides complex eigenfrequenciesand eigenmodes.

Given an integral equation

●

()= HEz- )Z, L%, u E(Z)dZ

one obtains a solution in terms of a

x( ~D(kn, S, u)
E(s) =

‘n ~n

superposition of waves

-1/2

)

exp p

s
i

1
kn (u, S’) ds’ - iwt .

0

(23)

(24)

.

Here, the en are constants and the kn satisfy the local dispersion relation

w

O=D(k
n, S, U) ~ ~ % (y, s, w) eikny dy . (25)
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The physical interpretation is that a system can support many waves each

characterized by a particular kn(s, w). Each wave has a conserved ●

action-flow

b

A (Z) = lE~ll-~D(kn, 8, m)/~kl
n

This may be written as the product of action density and group velocity

()aD/aknAn(z) = lE~I aWa~ m

(26)

(27)

A physical question arises: if each wave carries action right through

the system, how can a confined mode ever occur? The answer is that a confined

mode can only occur if one wave couples to another wave with an oppositely

directed action flow. Waves can couple together linearly only if they have

the same frequency and wavenumber. Points at which two different waves have .

the same wavenumber are called turning-points; at such points aD/2k is zero.

The procedure for determining mode structure will now be described. For the

remainder of this section z replaces s and the

left-handed.

The first step is to locate all relevant

subscript 1 does not mean

turning-points and locate the

intercepts on the real z axis of all the Stokes’ lines emanating from those

turning-points.

The

form part

The

following

second step is to decide which roots kn(z) yield waves that can

of the solution as z + + CO,and which roots are good as z + - ‘.

third step is to continue the solutions inward from fCO,using the

formula for coupling of waves near a turning-point. Let Zt be a

●

●

turning-point where \=kg. Let ZS be the intercept on the real axis of

a Stokes’ line emanating from Zt, and let ~ be there dominant with
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respect to Zt, i.e., let

*

*

●

e

[

z

I [%s
exp i (z’) II-kg(z’) dz’

‘t

be exponentially large. Then, the wave

E(z) = Ch

on one side of the

E(z) = Ch

+C
h

on the other side.

z

.)\ dz’ (28)

Stokes’ line has a continuation

-1/2
exp (i

z

0/)~dz’

The sign of the square root is chosen so that near Zt

() -1/2 :
( %)~D/3k = ti aD/a

-1/2
(30)

where the plus sign is chosen if the continuation is made in a clockwise

direction about Zt. This is consistent with Furry.7 Subdominant waves

are continued across Stokes’ lines unaltered.

The fourth step is to compare coefficients of the various waves after

the two solutions have been continued from @ to some common meeting point,

say the origin. This yields a phase-integral condition which constitutes the

global dispersion relation for the finite system in question.

Figure 12 is an example. The turning-points are labeled by the k roots

which coincide there. It is left as a simple exercise for the reader to show

that the phase-integral condition is
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[

I
‘h!? 1[ ‘hm

-l=exp i dz(ki -~) +exp i
\ 1dz(km - kJ (31)

2
hf 2

hm

provided that the allowable k roots at z = km are as indicated, and provided

that
% is dominant with respect to ~hg and ~

hm’
subdominant with

respect to %jj and ~m. It is

system. Even if the system is

kn(z) = kn(-z) ,

$=-2
ab ab “

not necessary to assume symmetry of the

symmetric, i.e.,

(32)

(33)

Figure 12 makes it clear that the mode pattern need have no definite

symmetry. Only under combined space and time reversal does the mode

necessarily go into another good eigenmode.

Figure 13 shows the stability boundary in ~1 - ~1 space for the case I

plasma described in Sec. 11. This boundary differs only slightly from that

shown in Fig. 7. The Pearlstein-Berk formula (22) yields, for case I, a

result very close to that obtained by using

(31).

The z-plane Stokes’ line diagrams are

the exact phase-integral formula

shown in Figs. 14 - 16. The

frequency and wavenumber are normalized to the actual midplane ion

gyrofrequency and gyroradius, with the latter defined by 2 <v2>/3. The
●

dashed lines are Stokes lines, the wavy lines anti-Stokes lines. Such lines

emanating from different turning-pointsmay cross since they are level-lines ●

of different quantities. The signs of the group velocities’ real parts are

shown in parentheses.



The wiggle in the

transition from a phase

● turning-points ~zl to a

turning-points *22. In

*

,

-13-

stability boundary of Fig. 13 is associated

integral relation determined mainly by the

with the

phase-integral relation determined mainly by the

terms of Eq. 31, the wiggle in the boundary of Fig,

13 occurs because at lower @l the second term on the right is exponentially

small, whereas at higher 61 the first term on the right is exponentially small.

The Stokes diagram (12) and associated phase-integral formula (31) are

correct for this problem. This

16, with the possible exception

good solution as z + + ~. Even

part at finite z, the fact that

the choice is correct as shown.

is obvious from an inspection of Figs. 14 -

of the choice of the root kg as representing a

though kk may have a small negative imaginary

it represents an outgoing wave ensures that

*

4?
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APPENDIX A

EXPLICIT INTEGRO-DIFFERENTIALEQUATION AND EXACT LOCAL DISPERSION RELATION

*

This appendix is restricted to the case of parallel propagation. The

* integro-differentialequation describing Alfv6n-ion-cyclotronmodes confined by

a magnetic well is exhibited. The ion distribution function and the shape of

the well are arbitrary. The symmetry of the kernel is shown. The

doubly-Fourier-transformedkernel is displayed, for future use in exact

spatial eigenmode calculations. The singly-Fourier-transformedkernel,

namely, the local dispersion relation (25), is displayed. It is shown that

the latter reduces to the usual homogeneous-plasmadispersion relation for

growth rates greater than a representativebounce-frequency.

Consider a left-hand polarized disturbance propagating along the axes of .

an axisynmetric mirror machine. The linearizedVlasov equation describing

this disturbance, including the effect of fieldline convergence, is
8

SC

Here, a is

. respect to

(Al)

the ion cyclotron frequency, a prime denotes the derivative with

z, z is the distance along the axis measured from the midplane,

.

fl (vx, Vy, Vz, z) = e‘1$ fg (Vl, yl, z) , (AZ)
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()()v Cos $
x = 1

‘Y
sin $

and

s (A3)

a

31(Z) = (1, -i, o) EL(z) .

Assuming adiabatic invariance and defining

2
E =V,

lJ=v12/b ,

b(z) = Be(z)/Bo(@ ,

one may write (34) in the form

where

w
(A4)

(A6)

(A7)

Z= Z(T) ,

(A8)

(A9)

7
= dz/dT .
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parameterizes the unperturbed orbit. Using an integrating factor and

integrating by parts one obtains, taking causality into account,

exp . (All)

The left-hand-polarizedcurrent, including the contribution fran the cold

electrons, is

JR(z) =
31

3
‘Vvl ‘2%71’

‘)+ * ‘~(z) “
(A12)

Substitution of (All) into (A12) yields

normalized to the localHere, F. is the local ion distribution function

plasma density. The function f
Qg

is the non-local part of ff and is summed

over the two values of $ satisfying

z = 2(3) . (A14)
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The integro-differentialequation obeyed by the electric field, including the

8
effect of wavefront curvature, is

iJ~(z)
+ Ef(z) + — ●

cow

Substitution of (All) and (A13) into (A15), and division by b(z) yields

c’
02 =—

“u

.

[1~(z) 1/2 a 0(0) a—.
%Q2(Z) az [1

n(z) 11’ + ; Q’L(Z)Q(0)
Q3(Z)

ER(z)

E2(z)

(A15)

s (A16)

A

where the integral is summed over the two values of CSsatisfying (A14).

Schematically,

(A17)

*

*

The kernel of (A16) is sytmnetric. This is demonstrated by taking the Fourier

transform in both spatial variables.
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dz
I

exp (-ikz + iKZ)~ (2sZ) (A18)
f>

1 C2 [2ik$2(z)- fl’(z)l[2i~(z) +~’(z)l + ~
+x? Q2(Z)

(J2.(Z)( \ ‘2
aFo(z)

--%-- fi)+l+ )1d3v V1 —

w?

\

T/2
do

$
d~

-T/2 -co

exp [-ikz(u) + iKZ(~)~ exp

f3

-i
/

I

dP[~(P)-wl , (A19)

T

where T = T(E, U) is the orbital period and the origin of U is arbitrarY” The

Hermitian nature of ~g becomes clear by inspection upon changing the variables

and limits of integration.

●
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03

A

Dk(k,K) = ~
\

dz

[

7 C2 O’2(Z)
~ exp[i(K-k)zl–——

8 M2 $22(Z)-m

*
1 C2 [2ikfl(z)- fl’(z)]12iK~(z)+ ~’(z)~ + ~

‘z~ Q.2(Z)

L/i(z)

( J

~Fo(z)
—+1+

w’
!d?z) )1d3v V2 —

ai

(A20)

[/

ci+f3

exp [-ikz(a-~)+ iKZ(a+~)l exp i dPI~(P)-~]

a-6 I
The kernel D is Hermitian even though the magnetic well need not be spatially

syumetric. The form (A20)

type already performed for

The local dispersion

may find use in exact eigenmode calculations of the

the electrostaticwell by Rognlien and Watson.
9

fuwtion (25) may be written

M 2+2-ipz~ipzfil(z,z)~(s
Dt(P,S) = b(s) dz dZ k 2)

-—

where the factor b(s) is inserted for convenience. Comparison with (A18)

(A21)

and (A20) immediately yields
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2

( )

30’’(s) - 7 Q’2(S) + ~
Di(P,S) ‘~ -p2 +~hm %12(s)

#

u

I d~ [b(u)]1’2 [b{~)]1’2 exp [-ipz(~) + ipZ(T)l

.m

[/

u

exp -i 1[1z(u)+z(T)
dp [Sl(P)-wI ~ S ‘-~ I

(A22)

T

where z and Z are functions of their orbital-parameterarguments.

The local dispersion function (A22) reduces correctly to the homogeneous

dispersion function (1) in the limit of large machines and strong growth” The

gradient terms in the free-space contribution may be neglected when the

wavelength is much shorter than the magnetic well scale length. The closure

of the orbits may be neglected when the growth rate is much greater than the

bounce frequency of most particles; this allows one to expand the orbital

functions z, Z in (55) about u = T = 0, where 9 is a value of the orbital

parameter corresponding to s. The approximate local dispersion function is

then
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LFi(s)

:22 ( J

3FO(S)
Dl(p,s) = - ~ + 1 -

W2 a+)
+1+ d3v V2 —

37;

inw2i(o) a

\

00

/“

afo af
dp pb2(s) !2(0)+&Q) 1 *

22 0 ‘E 5ji-pb(s)

] IL‘“L““pIip(’-”)$‘Xp‘(T-5)[n(s)-uJI
(A23)

where the integral is understood to be summed over ~~letwo possible values

Of(l.

Carrying out the orbital integrations

(02.(s) ( ~Fo(s)
Dk(p,s) = - q+l-+&l +1+

/
d3v f

)

7
(L) (J

avll

1
-1

M - f-l(s) - f%

Identifying de/ds as VI,and Pb as V; one recovers

(A24)
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D2(p,s) =

*

.1

+

is the local

~Fe

2.(s)
2 —2

~ j d3~ ‘“II‘1 ~:
- L?(s)Fo

w- ) - P“,, s
(Al

parallel-propagationdispersion function (1).

,

(A25)
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FIGURE CAPTIONS

Absolute stability boundaries in $ - $, space for

bi-Maxwellian ion distribution, infinite-lengthsystem.

Briggs-Bers criterion, case I: Rp = 15 piv, case 11: R
P

=2.7p. Topology checks marked by circles.lV“

k plane, case I. f31= 0.86, ~1 = 0.55.

k plane, case 1. 131= 0.94, $ = 0.61.

k plane, case I. ~1 = 0.97, f$ = 0.62.

k plane, case II. 131 = 0.96,
%

= 0.36.

k plane, case II. f3L = 0.98, 1$ = 0.44.

Stability boundaries in f31- ~1 space for bi-Maxwellian ion

distribution in mirror with 2:1 vacuum mirror ratio.

Briggs-Bers criterion with Pearlstein Berk correction. Case

I: Rp = 15 Piv, L ~ 50 piv. Case 11: Rp = 2.7 piv$

L=15P iv“ Topology checks marked by circles.

k plane, case I. 131= 0.904
‘$=

k plane, case I. @l = 0.980, =%

k plane, case 11. $ = 0.90, $ =

k plane, case 11. ~1 = 0.94, $ =

Description of confined mode using

lines in the complex z plane.

0.520.

0.536.

0.06.

0.064.

turning-points and Stokes’

Stability boundary in 13J- $ space for bi-Maxwellian ion

distribution in mirror with 2:1 vacuum mirror ratio.

Two-turning-point-pairphase-integral condition. Case 1:

RP = 15 Pivt L = 50 piv* Note close agreement with

Fig. 2. Topology checks marked by circles.

_——.



Figure 14

Figure 15

Figure 16

z plane, case I.

0.0000).

z plane, case I.

O.OOOO).

z plane, case 1.

0.0000).
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Bl = 0.86,
?1

= 0.474, w/w = (0.3992,ci

f+ = 0.94, $ = 0.534, w/uci = (0.3725,

fj = 0.99, $ = 0.568, (.d/uci = (0.1828,

NOTICE
This report was prepared as an account of work sponsored by the United
States Government. Neither the United States nor the United States
Department of Energy, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness or usefulness of any information, apparatus,
product or process disclosed, m represents that its use would not infringe
privately-owned rights.

Reference to a company or product name does not imply approval or
recommendation of the product by the University of California or the U.S.
Department of Energy to the exclusion of others that may be suitable.
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